Intraperitoneal, subcutaneous and intravenous glucagon delivery in rats: Effect on glucose levels

Ilze Dirnena-Fusini1,2, Marte K. Åm1,2,4, Sven M. Carlsen1,2,5, Anders L. Fougner1,3, Sverre C. Christiansen1,2,5

1Artificial Pancreas Trondheim – The APT research group (www.apt-norway.com)
2Department of Clinical and Molecular Medicine
3Department of Engineering Cybernetics
4Norwegian University of Science and Technology (NTNU)
5Helse Midt-Norge – The Central Norway Regional Health Authority, Norway
6St. Olavs University Hospital, Trondheim, Norway

Background

Aim:
To investigate the glucose response after intraperitoneal (IP) glucagon administration compared to subcutaneous (SC) and intravenous (IV) administration.

Motivation:
Limited available information about the glucose response after IP glucagon administration.

Challenges:
- Confounding by endogenous glucagon and insulin secretion.
- Isoflurane anesthesia increases blood glucose (BG).
- Blinded IP injection.
- Frequent blood sampling from conscious rats.

Methods

A prospective, randomized, controlled, open-label, crossover trial in 20 octreotide treated rats.

Three interventions, one week apart, in a randomized order, in each rat.

15 rats: IP and SC glucagon injections and placebo (isotonic saline) injection.

5 rats: IP, SC and intravenous (IV) glucagon injections.

The dose of glucagon – 5 µg/kg body weight (all routes).

BG levels measured before and until 60 min after the glucagon/placebo injection.

Results

Raw data

Glucose change

Glucose change adjusted for placebo effect

Summary

- IP glucagon – significant BG increase after 4 min. (p=0.009) (×) (fig.B and C)
- SC or IV vs placebo – significant BG increase after 8 min. (p=0.002, p<0.010) (×) (fig.B and C)
- Glucose level at 40 minutes lower after IP compared to SC glucagon delivery (p=0.005) (+) (fig.C)

Conclusions

When glucagon is injected in the peritoneal cavity compared to subcutaneous tissue:

- the initial glucose response is faster.
- the maximum glucose response is reached earlier.
- the decline in glucose response seems to be faster.

Acknowledgments

The animal experiments were conducted at the Comparative medicine Core Facility (CoMed), Norwegian University of Science and Technology (NTNU). CoMed is funded by the Faculty of Medicine at NTNU and Central Norway Regional Health Authority.

We thank the Associate Professor Øyvind Salvesen, Faculty of Medicine and Health Sciences, NTNU, for help with the statistical analysis and Gita Nagarajah for her work on the glucose analysis.

Declaration of interest: There is no conflict of interest that could be perceived as bias in data interpretation and analysis.

Fundings: This research is founded by The Norwegian Research Council (Project no.: 248872/G70), Central Norway Regional Health Authority and Johan Selmer Kvanes Endowment for Research and Combating of Diabetes.

ilze.dirnena-fusini@ntnu.no