Abstract

One of the challenges for diabetic patients is to regulate the amount of glucose in the blood. Quick and reliable meal detection represents one relevant issue to develop more effective treatments. This work presents a statistical machine learning approach for quickest meal detection using abdominal sounds. The data presented in the paper is obtained using Electronic Stethoscope Model 3200 produced by 3M Littmann. The results show an average detection delay lower than 25 seconds with no false detections. Early and reliable meal detection eases the mental burden of diabetic patients in documenting every meal in the controller and also reduces the risk of hypoglycemia.

Experimental Setup

The data presented in the poster were collected from Electronic Stethoscope Model 3200 produced by 3M Littmann, which supports single channel data acquisition. The sampling frequency of this device is 4 kHz. It was applied to the lower abdomen of the subject under the umbilicus using medical tape.

Results

Five recordings were collected using a Littmann stethoscope that were all from the same subject. The subject remained seated during each recording. For all the recordings, the subject fasted at least 10 hours before the recording session. Each recording lasted a total of approximately 60 minutes. Five meals were started 15 minutes after the start of the recording, while the last one started after 21 minutes of recording.

Fig. 2 is obtained using 3 recordings for the training stage and the remaining 2 for the testing stage. We can see that the lower the threshold, the more sensitive the algorithm will be, hence reducing the detection delay, but in turn, increasing the false positive rate. Preliminary testing results show that we can achieve very low false positive rates if we allow an average detection delay of maximum 25 seconds.

Conclusion

This work presents a statistical machine learning approach for quick and reliable meal detection. The results show that it is possible to detect the meal within 25 seconds on average with no false positives. In future works, the study will be extended to a bigger dataset and more subjects as well as more realistic scenarios.

Methodology

The algorithm comprises three steps (see Fig. 1):

- 41 sub-signals (features) are extracted from the acquired acoustic signal.
- Likelihood values for each sub-signal being in one of the two hypotheses (meal and no-meal) is computed, and then their ratio. All the log-likelihood ratios (LLRs) are then combined to assign the original signal its value of LLR.
- The last result is processed via CuSum recursive algorithm and its result is compared to a threshold for quickest meal detection.

Acknowledgements

The authors would like to thank the Artificial Pancreas Trondheim (APT) research group. The work is partially supported through "Listening to the patients" project by the Research Council of Norway (grant no. 294828).

References


Contact Information

Email: gianluca.tabella@ntnu.no